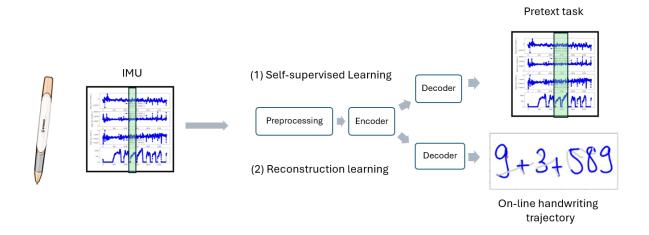


Self-supervised learning of sensor signals from a digital pen developed by Stabilo for handwriting trace reconstruction purpose

Job opportunity from Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes, France

Position	Intership
Location	IRISA lab, SHADoc team 263 avenue du Général Leclerc, 35000 Rennes (France)
Duration	6 months
Desired start date	February 1, 2026
Supervisors & Contacts	Eric Anquetil eric.anquetil@irisa.fr Yann Soullard yann.soullard@univ-rennes2.fr

Keywords


> Self-supervised learning, Deep learning, Handwriting reconstruction, Pretext task, IMU sensor signals, Trajectory reconstruction, Time series

Subject

Handwriting remains a natural and ubiquitous means of interaction, yet its accurate, real-time digitization still poses significant challenges. While most of electronic styluses are marketed in conjunction with tablets, without offering compatibility between the different brands, digital pens have been developed to enable writing on paper, while keeping a digital trace. These pens integrate a camera to capture the writing trace and require the use of special dot papers.

In recent years, the company STABILO has designed a new pen, called the Digipen, with the goal to write on any surface (tablet, paper, board,...). This pen integrates IMU sensors (accelerometers, gyroscope, pressure sensor) to capture the pen's trajectory. Various research works have been conducted using this pen to study pattern recognition [Ott et al., 2020, Wehbi et al., 2020] and handwriting trace reconstruction [Imbert et al., 2025, 2024, Swaileh et al., 2023]. In our previous works, we have demonstrated very promising results for handwriting trace reconstruction, particularly through a mixture of experts approach that distinguishes the 2D trace of the writing and the 3D trajectories related to pen-up parts [Imbert et al., 2025].

This system perform well on data on the type on which it has been trained, i.e. mainly on short texts or characters written on tablet by adults. However, it can suffer from a lack of adaptability to generalize to new contexts, children handwriting [Imbert et al., 2024], handwriting on paper or various handwriting patterns (e.g. mathematical expression, unrestricted drawing). This is notably due to the lack of supervised data with diversity that can be exploited to train the model. Indeed, having supervised examples is complex and time-consuming, as we have to 1) build an acquisition protocol, 2) design and implement the solution for data acquisition, 3) ask users to participate to the data collection. Another solution is to enable various users to use the Digipen in the everyday environment. This allow to acquire numerous data but without any supervision on what is written and it could be a solution to get numerous data with high variability.

The goal of this internship will be to explore self-supervised learning in order to take advantage of unsupervised IMU signals. In this way, we will explore a pretext task that does not require manual annotation (step 1 in the figure) and where the model acquires strong modeling capabilities for the task in question (step 2 in the figure). We will first explore the literature foundation on this topic. Self-supervised learning has been widely explored [Gui et al., 2024], especially to deal with images (DINO [Caron et al., 2021]) or texts (GPT-3 [Brown et al., 2020]) but this is also a current research topic for dealing with time series [Zhang et al., 2024, Pöppelbaum et al., 2022]. In this way, there is especially recent works combining self-supervised learning and IMU signals [Tan et al., 2024, Das et al., 2025]. In a second phase, we will investigate one of this approach and adapt it to the context of handwriting reconstruction from IMU signals. Experiments will be conducted on existing datasets (adult handwriting on tablets, on paper, and children's handwriting), considering parts of the data as unlabeled.

If it is successful, this work may lead to a scientific publication and, subject to funding, a PhD thesis can be considered as a continuation of this internship in partnership with the Stabilo company and the Karlsruhe Institute of Technology (Germany) with the goal to jointly design the next generation of the Digipen.

Références

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

- Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pages 1877–1901, 2020.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *International Conference on Computer Vision*, pages 9630–9640, 2021.
- Arnav M Das, Chi Ian Tang, Fahim Kawsar, and Mohammad Malekzadeh. Primus: Pretraining imu encoders with multimodal self-supervision. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2025.
- Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and Dacheng Tao. A survey on self-supervised learning: Algorithms, applications, and future trends. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(12):9052–9071, 2024.
- Florent Imbert, Romain Tavenard, Yann Soullard, and Eric Anquetil. Domain adaptation for handwriting trajectory reconstruction from imu sensors. In *International Conference on Document Analysis and Recognition*, pages 3–11. Springer, 2024.
- Florent Imbert, Eric Anquetil, Yann Soullard, and Romain Tavenard. Mixture-of-experts for handwriting trajectory reconstruction from imu sensors. *Pattern Recognition*, 161:111231, 2025.
- Felix Ott, Mohamad Wehbi, Tim Hamann, Jens Barth, Björn Eskofier, and Christopher Mutschler. The onhw dataset: Online handwriting recognition from imu-enhanced ballpoint pens with machine learning. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 4 (3):1–20, 2020.
- Johannes Pöppelbaum, Gavneet Singh Chadha, and Andreas Schwung. Contrastive learning based self-supervised time-series analysis. *Applied Soft Computing*, 117:108397, 2022.
- Wassim Swaileh, Florent Imbert, Yann Soullard, Romain Tavenard, and Eric Anquetil. Online handwriting trajectory reconstruction from kinematic sensors using temporal convolutional network. *International Journal on Document Analysis and Recognition (IJDAR)*, 26(3):289–302, 2023.
- Tian Tan, Peter B Shull, Jenifer L Hicks, Scott D Uhlrich, and Akshay S Chaudhari. Self-supervised learning improves accuracy and data efficiency for imu-based ground reaction force estimation. *IEEE Transactions on Biomedical Engineering*, 71(7):2095–2104, 2024.
- Mohamad Wehbi, Tim Hamann, Jens Barth, and Bjoern Eskofier. Digitizing handwriting with a sensor pen: A writer-independent recognizer. In *2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR)*, pages 295–300. IEEE, 2020.
- Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y Zhang, Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series analysis: Taxonomy, progress, and prospects. *IEEE transactions on pattern analysis and machine intelligence*, 46 (10):6775–6794, 2024.

Expected skills

- > Expected courses : Machine Learning, Deep Learning
- > Skills:
 - > Python programming
 - > At least one experience with a deep learning environment (PyTorch, Keras, TensorFlow)

How to apply

- > CV
- > Master's or engineering school grades

SHADoc team

The Shadoc team (Systems for Hybrid Analysis of DOCuments) focuses on modelling man-made data for written communication: handwriting, gesture (2D and 3D), and documents, under various aspects: analysis, recognition, composition, interpretation.

The objective is to achieve a continuum between paper and digital documents with a certain readability. We mainly focus on the following topics:

- > Intelligent recognition of handwritten content: documents, writings, gestures;
- > Analysis of the semantic/structural content: document structure, stages of production of diagrams, drawings, musical scores, sketches, architectural plans;
- > Design of new AI, combining recognition and analysis: offer enriched experiences for digital humanities or e-education.

The roadmap of the Shadoc team is on the frontier of several research axes: Pattern Recognition, Machine Learning, Artificial Intelligence, Human-Machine Interaction, Uses and Digital Learning. Our research is characterized by the hybridization of several Al approaches: two-dimensional grammars, deep learning, fuzzy inference systems... This hybridization aims at guaranteeing, beyond performance, important aspects such as: explicability, genericity, adaptability, data frugality. Beyond hybridization, the originality of this research is to focus on user interaction. This strategy aims at answering the limits of the current approaches which are based on non-interactive treatments. The concept is to reinforce the decision processes by relying on the implicit validations or explicit corrections of a user to avoid the propagation of errors throughout the analysis. The notions of interpretation, adaptation and incremental learning are at the heart of this research, the objective being to design efficient, robust and self-evolving system.

IRISA lab

IRISA is today one of the largest French research laboratory (more than 850 people) in the field of computer science and information technologies. Structured into seven scientific departments, the laboratory is a research center of excellence with scientific priorities such as bioinformatics, systems security, new software architectures, virtual reality, big data analysis and artificial intelligence.

Located in Rennes, Lannion and Vannes, IRISA is at the heart of a rich regional ecosystem for research and innovation and is positioned as the reference in France with an internationally recognized expertise through numerous European contracts and international scientific collaboration.

Focused on the future of computer science and necessarily internationally oriented, IRISA is at the very heart of the digital transition of society and of innovation at the service of cybersecurity, health, environment and ecology, transport, robotics, energy, culture and artificial intelligence.

IRISA is a joint-venture resulting from the collaboration between nine institutions, in alphabetical order: CentraleSupélec, CNRS, ENS Rennes, IMT Atlantique, Inria, INSA Rennes, Inserm, Université Bretagne Sud, Université de Rennes. From this collaboration is born a force that comes from women and men who give the best of themselves for fundamental and applied research, education, exchanges with other disciplines, transfer of know-how and technology, and scientific mediation.